Respuesta :

Step 1. We know the measure of all of the angles in the triangle and the measure of side b:

Required: Find the measure of sides a and c to the nearest tenth.

Step 2. To find a and c we use the law of sines.

A, B, and C are the angles of the triangle and a, b, and c are the sides. The law of sines is:

[tex]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]

In our case, substituting the known values:

[tex]\frac{a}{sin60}=\frac{53}{sin42}=\frac{c}{sin78}[/tex]

Step 3. Using the first equality we can find the value of a:

[tex]\frac{a}{s\imaginaryI n60}=\frac{53}{s\imaginaryI n42}[/tex]

Solving for a:

[tex]a=\frac{53}{s\imaginaryI n42}\times sin60[/tex]

Solving the operations:

[tex]\begin{gathered} a=\frac{53}{(0.669130606)}(0.866025403) \\ \downarrow \\ \boxed{a=68.6} \end{gathered}[/tex]

The result is already rounded to the nearest tenth.

Step 4. Using the second equality from step 2

[tex]\frac{53}{sin42}=\frac{c}{sin78}[/tex]

We will be able to find the value of c.

Solving for c:

[tex]sin78\times\frac{53}{sin42}=c[/tex]

Solving the operations:

[tex]\begin{gathered} (0.9781476)\frac{53}{(0.669130606)}=c \\ \downarrow \\ \boxed{77.5=c} \end{gathered}[/tex]

The result is already rounded to the nearest tenth.

Answer:

[tex]\begin{gathered} \boxed{a=68.6} \\ \boxed{c=77.5} \end{gathered}[/tex]

Ver imagen OreoluwaI131659