Which of the following is the greatest common factor of the terms 36a^5b^3, 28a^2b, 20a^3b^6A. 4a^5b^6B. 1260a^5b^6C. 4a^2bD. 9a^3b^2+7+5ab^5

Answer:
The greatest common factor is;
[tex]4a^2b[/tex]Explanation:
Given the expressions in the attached image;
[tex]36a^5b^3,28a^2b,20a^3b^6[/tex]Let us expand the expressions to get the GCF;
[tex]\begin{gathered} 36a^5b^3=2\times2\times3\times3\times a\times a\times a\times a\times a\times b\times b\times b \\ 28a^2b=2\times2\times7\times a\times a\times b \\ 20a^3b^6=2\times2\times5\times a\times a\times a\times b\times b\times b\times b\times b\times b \end{gathered}[/tex]The GCF will be the common factors;
[tex]\begin{gathered} \text{GCF}=2\times2\times a\times a\times b \\ \text{GCF}=4a^2b \end{gathered}[/tex]Therefore, the greatest common factor is;
[tex]4a^2b[/tex]