Respuesta :

Hello

To solve this question, we need to use the formula of compound interest

This is given as

[tex]a=p(1+\frac{r}{n})^{nt}[/tex]

Let's define our variables

[tex]\begin{gathered} a=\text{compounded interest} \\ p=\text{principal}=350 \\ n=\text{number of times compounded}=1 \\ t=\text{time}=7 \\ r=\text{rate}=10\text{ \%=0.1} \end{gathered}[/tex]

we can substitute into the equation

[tex]\begin{gathered} a=350(1+\frac{0.1}{1})^{1\times7} \\ a=350(1+0.1)^7 \\ a=350(1.1)^7 \\ a=350\times1.95 \\ a=682.050\approx682.1 \end{gathered}[/tex]

From the calculation above, you would have $682.1 in your account at the end of 7 years