Solution
To find the volume, V, of a cylinder, the formula is
[tex]V=\pi r^2h[/tex]Where
[tex]\begin{gathered} r\text{ is the radius} \\ h\text{ is the height} \end{gathered}[/tex]Given that
[tex]\begin{gathered} h=12in \\ \pi\text{ is taken as 3.14} \\ V=1500in^3 \end{gathered}[/tex]To find the radius, r,
Substitute the values into to find the volume, V, of the cylinder
[tex]\begin{gathered} V=\pi r^2h \\ 1500=3.14\times r^2\times12 \\ 1500=37.68r^2 \\ \text{Divide both sides by 37.68} \\ \frac{37.68r^2}{37.68}=\frac{1500}{37.68} \\ r^2=39.86393112 \\ \text{Square root of both sides} \\ \sqrt[]{r^2}=\sqrt[]{39.86393112} \\ r=6.31in\text{ (nearest hundredth)} \end{gathered}[/tex]Hence, the radius is 6.31in (nearest hundredth)