Given:
Slope, θ= 30 degrees
Coefficient of kinetic friction, μ = 0.10
Let's find the following.
(a) Acceleration of the skier.
To find the acceleration of the skier, apply the formula:
[tex]mg\sin \theta-\mu mg\cos \theta=ma_{\text{net}}[/tex]Since we are to find acceleration, rewrite the equation for a:
[tex]a_{\text{net}}=g\sin \theta-\mu g\cos \theta[/tex]Where:
g is the acceleration due to gravity = 9.8 m/s²
μ = 0.10
θ= 30 degrees
Thus, we have:
[tex]\begin{gathered} a_{net}=9.8\sin 30-0.10\ast9.8\cos 30 \\ \\ a_{\text{net}}=4.9-0.85 \\ \\ a_{\text{net}}=4.05m/s^2 \end{gathered}[/tex]Therefore, the acceleration of the skier is 4.05 m/s².