Respuesta :

[tex]2^x=-3x+5[/tex]

hence, we have

[tex]1=\frac{(-3x+5)}{2^x}[/tex]

or equivalently

[tex]\begin{gathered} 1=(-3x+5)e^{-x\ln 2}\ldots\ldots.(A) \\ \end{gathered}[/tex]

since

[tex]\frac{1}{2^x^{}}=2^{-x}=e^{-x\ln 2}[/tex]

Now, from equation A, we can identify:

[tex]\begin{gathered} u=(-x+\frac{5}{3})\ln (2) \\ \text{and} \\ x=-\frac{3u-5\ln (2)}{3\ln (2)} \end{gathered}[/tex]

by substituying these equations into A, we have,

[tex]1=(-3(-\frac{3u-5\ln2}{3\ln2})+5)e^{-\ln 2(-\frac{3u-5\ln 2}{3\ln 2})}[/tex]

by simplifying this equation, we have

[tex]1=e^{\frac{3u-5\ln2}{3}}(\frac{3u-5\ln 2}{\ln 2}+5)[/tex]

The final solution is

[tex]x=-\frac{3W(\frac{e^{5\ln2/3}\ln2}{3})-5\ln 2}{3\ln 2}[/tex]

where W is given by

[tex]W=\frac{e^{-5\ln 2/3+2}}{e^{\frac{3u-5\ln 2+6}{5}}}[/tex]