Respuesta :

Solution:

Given:

[tex]\begin{gathered} -8x+6y=24 \\ -16x-7y=-28 \end{gathered}[/tex]

Using the elimination method,

[tex]\begin{gathered} \text{Multiplying equation (1) by 2;} \\ -8x+6y=24\ldots\ldots\ldots\ldots\text{......}(1)\times2 \\ -16x+12y=48\ldots\ldots\ldots\ldots\ldots\ldots\text{.}\mathrm{}(1)\text{new equation (1)} \\ -16x-7y=-28\ldots\ldots..\ldots\ldots\ldots..\mathrm{}(2) \\ \text{Subtracting equation (2) from (1);} \\ (1)-(2); \\ -16x-(-16x)+12y-(-7y)=48-(-28) \\ 12y+7y=48+28 \\ 19y=76 \\ y=\frac{76}{19} \\ y=4 \end{gathered}[/tex]

Substituting y into equation (1);

[tex]\begin{gathered} -8x+6y=24 \\ -8x+6(4)=24 \\ -8x+24=24 \\ -8x=24-24 \\ -8x=0 \\ x=0 \end{gathered}[/tex]

Therefore, the solution is;

[tex](x,y)=(0,4)[/tex]

The solution is also shown graphically below;

Ver imagen MaylynV174893