A pipe that is closed at one end can be made to resonate by a tuning at a length of 0.25 m. The next resonant length is 0.75 m. If the speed of sound is 338 m/s, calculate:A. The wavelength of the sound emitted by the tuning fork.B. The frequency of the tuning fork

Respuesta :

Given data:

* The fundamental length of pipe is,

[tex]L_1=0.25\text{ m}[/tex]

* The next resonant length of pipe is,

[tex]L_2=0.75\text{ m}[/tex]

* The speed of the sound is v = 338 m/s.

Solution:

The fundamental length of the pipe in terms of the wavelength is,

[tex]L_1=\frac{1}{4}\lambda[/tex]

The second resonant length of the pipe in terms of wavelength is,

[tex]L_2=\frac{3}{4}\lambda[/tex]

Substracting both the values,

[tex]\begin{gathered} L_2-L_1=\frac{3}{4}\lambda-\frac{1}{4}\lambda \\ L_2-L_1=\frac{2}{4}\lambda \\ L_2-L_1=\frac{1}{2}\lambda \end{gathered}[/tex]

Substituting the known values,

[tex]\begin{gathered} 0.75-0.25=\frac{1}{2}\times\lambda \\ 0.5=\frac{1}{2}\times\lambda \\ \lambda=1\text{ m} \end{gathered}[/tex]

Thus, the value of the wavelength of sound emitted by the tuning fork is 1 meter.

(b). The frequency of the sound is,

[tex]\begin{gathered} v=f\lambda \\ f=\frac{v}{\lambda} \\ f=\frac{338}{1} \\ f=338\text{ Hz} \end{gathered}[/tex]

Thus, the frequency of sound is 338 Hz.