SOLUTION
Concept: Equation of a Line
The equation of a line given a point(x,y) and the slope, m(gradient) is given by
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \end{gathered}[/tex]given the following parameters
[tex]x_1=7,y_1=5,m=\frac{4}{7}[/tex]we then substitute into the formula above
[tex]\begin{gathered} y-5=\frac{4}{7}(x-7) \\ 7(y-5)=4(x-7) \end{gathered}[/tex]Then simplify the expression by multiplying the terns in the parenthesis
[tex]\begin{gathered} 7y-35=4x-28 \\ 7y-4x-35+28=0 \\ 7y-4x-7=0 \\ or \\ y=\frac{4}{7}x+1 \end{gathered}[/tex]Therefore the equation of the line becomes 7y-4x-7=0