Respuesta :

SOLUTION

Concept: Equation of a Line

The equation of a line given a point(x,y) and the slope, m(gradient) is given by

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \end{gathered}[/tex]

given the following parameters

[tex]x_1=7,y_1=5,m=\frac{4}{7}[/tex]

we then substitute into the formula above

[tex]\begin{gathered} y-5=\frac{4}{7}(x-7) \\ 7(y-5)=4(x-7) \end{gathered}[/tex]

Then simplify the expression by multiplying the terns in the parenthesis

[tex]\begin{gathered} 7y-35=4x-28 \\ 7y-4x-35+28=0 \\ 7y-4x-7=0 \\ or \\ y=\frac{4}{7}x+1 \end{gathered}[/tex]

Therefore the equation of the line becomes 7y-4x-7=0