The equation for k is,
[tex]y=\frac{8}{7}x-3[/tex]Here slope is 8/7..
Since, line I is perpendicular to k, the slope of the line I is, -7/8.
The general line equation is,
[tex]y=mx+b[/tex]Here, m is the slope and b is the y intercept.
As the line passes through the points (2, -15/4), we have,
[tex]\begin{gathered} -\frac{15}{4}=-\frac{7}{8}\times2+b \\ -\frac{15}{4}=-\frac{7}{4}+b \\ b=-\frac{15}{4}+\frac{7}{4}=-\frac{8}{4}=-2 \end{gathered}[/tex]Thus, the equations are,
[tex]y=-\frac{7}{8}x-2[/tex]The point slope form is,
[tex]y+\frac{15}{4}=-\frac{7}{8}(x-2)[/tex]