As shown in the diagram ACF, B is a point on [line segment] AC and [line segment] DB is drawn. If m

We have the following:
a)
The sum of all angles within a triangle (face BDC) is 180°:
[tex]\begin{gathered} 180=<\text{BCD}+<\text{CBD}+<\text{BDC} \\ 180=24+<\text{CBD}+18 \\ <\text{CBD}=180-24-18 \\ <\text{CBD}=138 \end{gathered}[/tex]b)
The angles [tex]\begin{gathered} 180=<\text{CBD}+<\text{ABD} \\ <\text{ABD}=180-138 \\ <\text{ABD}=42 \end{gathered}[/tex]c)
The sum of all angles within a triangle (faceADB) is 180°:
[tex]\begin{gathered} 180=The answers are:a) mb) mc) m