What are the vertices of AA'B'C produced by T-3, 6) ((ABC) = AA'B'C?Ty421А х4-12O200C сO A. A'(0,6), B'(0,4), C'(-3,3)OB. A'(6,6), B'(6,4), C' (3, 3)OC. A'(0-6), B'(0, -8), C'(-3,9)D. A'(6, -6). B'(6, -8), C (39)

Answer:
A. A'(0,6), B'(0,4), C'(-3,3)
Step-by-step explanation:
The triangle has the following vertices:
A(3,0), C(0,-3), B(3,-2)
We make the following transformation:
T(-3,6), which means that:
(x,y) -> (x-3, y+6)
Applying the transformation to the vertices:
A(3,0) -> A'(3-3,0+6) -> A'(0,6)
B(3,-2) -> B'(3-3,-2+6) -> B'(0,4)
C(0,-3) -> C'(0-3, -3+6) -> C'(-3,3)
The new coordinates are:
A. A'(0,6), B'(0,4), C'(-3,3)