Respuesta :

Part 6

we have the expression

[tex]\lbrack6\cdot(4-2)+(21\cdot\frac{2}{3}+1)\rbrack+3^2[/tex]

To solve this problem

Apply PEMDAS

P ----> Parentheses first

E -----> Exponents (Powers and Square Roots, etc.)

MD ----> Multiplication and Division (left-to-right)

AS ----> Addition and Subtraction (left-to-right)

that means

step 1

Parentheses first

(4-2)=2

[tex]21\cdot\frac{2}{3}+1[/tex]

solve multiplication

[tex]\begin{gathered} \frac{42}{3}+1 \\ \frac{45}{3} \end{gathered}[/tex]

substitute in the original expression

[tex]\lbrack6\cdot2+\frac{45}{3}\rbrack+3^2[/tex]

Parentheses first again

multiplication

[tex]\begin{gathered} 6\cdot2+\frac{45}{3} \\ 12+\frac{45}{3} \\ \frac{81}{3} \end{gathered}[/tex]

substitute

[tex]\frac{81}{3}+3^2[/tex]

solve exponents first

[tex]\begin{gathered} \frac{81}{3}+9 \\ \frac{108}{3} \\ 36 \end{gathered}[/tex]

Part 2

GCF of 14 and 42

we have

14=2*7

42=2*3*7

so

GFC=2

TRue

Part 3

GCF 16 and 56

16=2*2*2*2

56=2*2*2*7

GCF=8

TRue

Part 4

LCM of 12 and 9

12=2*2*3

9=3*3

LCM=4*9=36

true

Part 5

LCM of 12 and 6

12=2*2*3

6=2*3

LCM=12

false