Respuesta :

Given the following expression:

[tex]\frac{(16 \sqrt[]{x})^2 }{y^{-1}}[/tex]

You need to remember the Rules of Exponents shown below:

- Negative Exponent Rule:

[tex]b^{-n}=\frac{1}{b^n}[/tex]

Where "b" is the base and "n" is the exponent.

- Fractional Exponent Rule:

[tex]b^{\frac{m}{n}}=\sqrt[n]{b^m}[/tex]

- Power of a Product Rule:

[tex](ab)^m=a^mb^m[/tex]

In this case, knowing the rules shown above, you can simplify the expression as follows:

1. Apply the Power of a Product Rule in the numerator:

[tex]=\frac{(16)^2(\sqrt[]{x})^2}{y^{-1}}=\frac{256^{}(\sqrt[]{x})^2}{y^{-1}}[/tex]

2. Apply the Fractional Exponent Rule to simplify the square root:

[tex]=\frac{256^{}(x^{\frac{2}{2}})^{}}{y^{-1}}=\frac{256^{}(x^1)^{}}{y^{-1}}=\frac{256^{}x^{}}{y^{-1}}[/tex]

3. Finally, apply the Negative Exponent Rule:

[tex]=(256^{}x)(y^1)=256^{}xy[/tex]

Therefore, the answers are:

- Expression simplified:

[tex]256^{}xy[/tex]

- Rules of Exponents used to simplify it:

1. Power of a Product Rule:

[tex](ab)^m=a^mb^m[/tex]

2. Fractional Exponent Rule:

[tex]b^{\frac{m}{n}}=\sqrt[n]{b^m}[/tex]

3. Negative Exponent Rule:

[tex]b^{-n}=\frac{1}{b^n}[/tex]