To answer this question we will use the following formula to compute the volume of a cylinder:
[tex]\text{Volume}=\frac{diameter^2}{4}\cdot\pi\cdot\text{height.}[/tex]Therefore, the volume of container A is:
[tex]V_A=\frac{(18ft)^2}{4}\cdot\pi\cdot9ft=729\pi ft^3\text{.}[/tex]The volume of container B is:
[tex]V_B=\frac{(16ft)^2}{4}\cdot\pi\cdot11ft=704\pi ft^3\text{.}[/tex]Now, after pumping the water, the percent of container A that is empty is:
[tex]\frac{V_B}{V_A}\times100=\frac{704\pi ft^3}{729\pi ft^3}\times100.[/tex]Simplifying the above result we get:
[tex]\frac{70400}{729}\approx96.6.[/tex]Answer: 96.6%