Respuesta :

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data:

an=(n+3)!/(n+4)!

Step 02:

nth term sequence:

1. n = 1

[tex]a_1=\frac{(1+3)!}{(1+4)!}=\frac{4!}{5!}=\frac{4\cdot3\cdot2\cdot1}{5\cdot4\cdot3\cdot2\cdot1}=\frac{1}{5}[/tex]

2. n = 2

[tex]a_2=\frac{(2+3)!}{(2+4)!}=\frac{5!}{6!}=\frac{5\cdot4\cdot3\cdot2\cdot1}{6\cdot5\cdot4\cdot3\cdot2\cdot1}=\frac{1}{6}[/tex]

3. n = 3

[tex]a_3=\frac{(3+3)!}{(3+4)!}=\frac{6!}{7!}=\frac{6\cdot5\cdot4\cdot3\cdot2\cdot1}{7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}=\frac{1}{7}[/tex]

4. n = 4

[tex]a_4=\frac{(4+3)!}{(4+4)!}=\frac{7!}{8!}=\frac{7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}{8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}=\frac{1}{8}[/tex]

The answer is:

[tex]\frac{1}{5},\frac{1}{6},\frac{1}{7},\frac{1}{8}[/tex]