Respuesta :

Answer:

i. C

ii. C

iii. A

iv. B

Explanation:

Exponential growth / decay can be shown using the formula below;

[tex]y=a(r)^{kt}[/tex]

Where;

[tex]\begin{gathered} y=\text{ final amount} \\ a=\text{ initial amount} \\ r=\text{exponential decay or growth.} \\ t=\text{time} \\ k=\text{constant} \end{gathered}[/tex]

The difference between exponential decay and growth is;

[tex]\begin{gathered} \text{ For exponential growth;} \\ r>0 \\ \text{ For exponential decay;} \\ r<0 \end{gathered}[/tex]

For the given question;

i.

[tex]y=(0.9)^{\frac{t}{2}}[/tex]

the values of r is;

[tex]\begin{gathered} r=0.9 \\ 0.9<1 \\ r<1 \end{gathered}[/tex]

Therefore, the function reveals exponential decay

C.

ii.

[tex]y=(0.81)^{6t}[/tex]

The same rule as in i applies here;

the values of r is;

[tex]\begin{gathered} r=0.81 \\ 0.81<1 \\ r<1 \end{gathered}[/tex]

Therefore, the function reveals exponential decay

C.

iii.

[tex]y=(1.08)^{t+6}[/tex]

the values of r is;

[tex]\begin{gathered} r=1.08 \\ 1.08>1 \\ r>1 \end{gathered}[/tex]

Therefore, the function reveals exponential growth

A.

iv.

[tex]y=(0.85)^t[/tex]

the values of r is;

[tex]\begin{gathered} r=0.85 \\ 0.85<1 \\ r<1 \end{gathered}[/tex]

it is an exponential decay.

The rate of decay is;

[tex]\begin{gathered} (1-r)\times100\text{\%} \\ =(1-0.85)\times100\text{\%} \\ =15\text{\%} \end{gathered}[/tex]

Therefore, the rate of decay of the function is 15%.

B.

v.

[tex]y=(\frac{1}{2})^t[/tex]

The value of r is;

[tex]\begin{gathered} r=\frac{1}{2}=0.5 \\ 0.5<1 \\ r<1 \end{gathered}[/tex]

It is an exponential decay.

The rate of decay is;

[tex]\begin{gathered} (1-r)\times100\text{\%} \\ =(1-0.5)\times100\text{\%} \\ =50\text{\%} \end{gathered}[/tex]

Therefore, the rate of decay of the function is 50%.

D.