Given:
a.) Suppose that Juan found a crop circle with a 1350 ft radius.
b.) He follows a 2000 ft arc on the circle.
To find the central angle, we will be using the following formula:
[tex]\text{ S = r}\Theta[/tex]Where,
S = Arc Length = 2000 ft.
r = radius = 1350 ft.
Θ = Central angle (in radians)
We get,
[tex]\text{ S = r}\Theta[/tex][tex]\Theta\text{ = }\frac{\text{ S}}{\text{ r}}\text{ = }\frac{\text{ 2000}}{\text{ 1350}}\text{ = }\frac{\text{ 40}}{\text{ 27}}[/tex][tex]\text{ }\Theta\text{ = }\frac{40}{27}\text{ radians}[/tex]Therefore, the answer is 40/27 radians.