Respuesta :

Answer:

To find the expression of the area under the graph f as limit,

Given that,

[tex]f(x)=x+\ln (x),4\leq x\leq9[/tex]

we get,

Consider the small rectangles in the area under the graph f, such that length is f(x) at x point and width is

[tex]\Delta x=\frac{b-a}{n}[/tex]

Where a and b are the end points and the n represents the number of partitions.(for n tends to infinity we can get the accurate area under the graph f)

The area of the graph under f is given by,

[tex]\lim _{n\to\infty}\sum ^n_{i\mathop=1}f(x_i)\Delta x[/tex][tex]=\lim _{n\to\infty}\sum ^n_{i\mathop{=}1}(x_i+\ln (x_i))\frac{9-4}{n}[/tex][tex]=\lim _{n\to\infty}\sum ^n_{i\mathop{=}1}(x_i+\ln (x_i))\frac{5}{n}[/tex][tex]=\lim _{n\to\infty}\sum ^n_{i\mathop{=}1}\frac{5}{n}(x_i+\ln (x_i))[/tex]

Answer is:

[tex]A=\lim _{n\to\infty}\sum ^n_{i\mathop{=}1}\frac{5}{n}(x_i+\ln (x_i))[/tex]