Respuesta :

Given the expression:

[tex]\begin{gathered} \\ \\ \text{ (xy}^7)^3\text{ }\div y^{14} \end{gathered}[/tex]

Let's simplify the expression.

To simplify the expression, take the following steps.

Step 1:

Apply the product rule of exponents

[tex]\begin{gathered} \text{ (xy}^7)^3\text{ }\div y^{14} \\ \\ =x^3\text{y}^7^{(3)}\text{ }\div y^{14} \\ \\ =\text{ }x^3\text{y}^{7\ast3}\text{ }\div y^{14} \\ \\ =\text{ }x^3\text{y}^{21}\text{ }\div y^{14} \end{gathered}[/tex]

Step 2:

Since we have the division sign here, we are to subtract to exponents that has the same bases.

Apply the division rule of exponents.

We have:

[tex]\begin{gathered} \text{ }x^3y^{21}\text{ }\div y^{14} \\ \\ x^3y^{21-14} \\ \\ =x^3y^7 \end{gathered}[/tex]

ANSWER:

[tex]x^3y^7[/tex]