Suppose that is an angle in standard position whose terminal side Intersects the unit circle at11 606161Find the exact values of sin 8, sec8, and tan.

ANSWER
[tex]\begin{gathered} \sin \theta\text{ = }\frac{60}{61} \\ \sec \theta\text{ = -}\frac{61}{11} \\ \tan \theta\text{ = -}\frac{60}{11} \end{gathered}[/tex]EXPLANATION
Step 1: The given coordinates placed the angle in the 4th quadrant.
[tex](x,\text{ y) = (-}\frac{11}{61},\frac{60}{61}\text{)}[/tex]Step 2:
Note: Radius (r) for unit circle is 1.
[tex]\sin \text{ }\theta\text{ = }\frac{y}{r}\text{ = }\frac{\frac{60}{61}}{1}\text{ = }\frac{60}{61}[/tex][tex]\sec \text{ }\theta\text{ = }\frac{1}{\text{cos}\theta}\text{ = }\frac{1}{\frac{x}{r}}\text{ = }\frac{r}{x}\text{ = }\frac{1}{\frac{-11}{61}}\text{ = -}\frac{61}{11}[/tex][tex]\tan \text{ }\theta\text{ = }\frac{y}{x}\text{ = }\frac{\frac{60}{61}}{-\frac{11}{61}}\text{ = }\frac{60}{61}\times-\frac{61}{11}\text{ = -}\frac{60}{11}[/tex]