Suppose that is an angle in standard position whose terminal side Intersects the unit circle at11 606161Find the exact values of sin 8, sec8, and tan.

Suppose that is an angle in standard position whose terminal side Intersects the unit circle at11 606161Find the exact values of sin 8 sec8 and tan class=

Respuesta :

ANSWER

[tex]\begin{gathered} \sin \theta\text{ = }\frac{60}{61} \\ \sec \theta\text{ = -}\frac{61}{11} \\ \tan \theta\text{ = -}\frac{60}{11} \end{gathered}[/tex]

EXPLANATION

Step 1: The given coordinates placed the angle in the 4th quadrant.

[tex](x,\text{ y) = (-}\frac{11}{61},\frac{60}{61}\text{)}[/tex]

Step 2:

Note: Radius (r) for unit circle is 1.

[tex]\sin \text{ }\theta\text{ = }\frac{y}{r}\text{ = }\frac{\frac{60}{61}}{1}\text{ = }\frac{60}{61}[/tex][tex]\sec \text{ }\theta\text{ = }\frac{1}{\text{cos}\theta}\text{ = }\frac{1}{\frac{x}{r}}\text{ = }\frac{r}{x}\text{ = }\frac{1}{\frac{-11}{61}}\text{ = -}\frac{61}{11}[/tex][tex]\tan \text{ }\theta\text{ = }\frac{y}{x}\text{ = }\frac{\frac{60}{61}}{-\frac{11}{61}}\text{ = }\frac{60}{61}\times-\frac{61}{11}\text{ = -}\frac{60}{11}[/tex]

Ver imagen ZayraJ7326