Respuesta :

Given:

[tex]5x+y=-10[/tex][tex]y=x^2-2x-8[/tex]

We can solve for the value of x through substitution.

We will substitute the value of y from the second equation, to the first equation.

[tex]5x+y=-10[/tex][tex]5x+(x^2-2x-8)=-10[/tex][tex]5x+x^2-2x=-10+8[/tex][tex]x^2+3x=-2[/tex][tex]x^2+3x+2=0[/tex]

We then get the factors of this equation.

(x + 1)(x + 2) = 0

Next, we will solve for the value of x.

[tex]x+1=0[/tex][tex]x=-1[/tex][tex]x+2=0[/tex][tex]x=-2[/tex]

With these two values of x, we can now find the values of y through substituting the values of x to either equations.

Using the first equation, given that:

x = -1

x = -2

[tex]x=-1[/tex][tex]5x+y=-10[/tex][tex]5(-1)+y=-10[/tex][tex]-5+y=-10[/tex][tex]y=-10+5[/tex][tex]y=-5[/tex]

Therefore, this will give us a solution of (-1, -5).

Next,

[tex]x=-2[/tex][tex]5x+y=-10[/tex][tex]5(-2)+y=-10[/tex][tex]-10+y=-10[/tex][tex]y=-10+10[/tex][tex]y=0[/tex]

And this will give us a solution of (-2, 0).

Therefore, all the possible solutions for this system of equations are (-1, -5) and (-2, 0).

Otras preguntas