Respuesta :

The Solution:

The formula for the equation of the parabola is

[tex]x=a(y-k)^2+h[/tex]

In this case,

[tex]\begin{gathered} k=1 \\ h=-3 \\ x=-4 \\ y=-1 \end{gathered}[/tex]

Substituting these values,

[tex]\begin{gathered} -4=a(-1-1)^2-3 \\ -4=a(-2)^2-3 \end{gathered}[/tex][tex]\begin{gathered} -4=4a-3 \\ -4+3=4a \\ -1=4a \end{gathered}[/tex]

Dividing both sides by 4, we get

[tex]a=-\frac{1}{4}[/tex]

Thus, the equation of the parabola is:

[tex]\begin{gathered} x=-\frac{1}{4}(y-1)^2-3 \\ \text{ }x+3=-\frac{1}{4}(y-1)^2 \end{gathered}[/tex][tex]\begin{gathered} a=-\frac{1}{4} \\ \\ h=-3 \\ \\ k=1 \end{gathered}[/tex]