Please help me with 7,8,and 9. They are all related to the same circle

7) We have here intersecting chords, so we can find the measure of the arcs and angles with this formula:
[tex]\begin{gathered} m\angle AED=\frac{1}{2}(mAD+mCB) \\ 5x-90=\frac{1}{2}(3x+x) \\ 5x-90=2x \\ 5x-90+90=2x+90 \\ 5x=2x+90 \\ 3x=90 \\ \frac{3x}{3}=\frac{90}{3} \\ x=30 \end{gathered}[/tex]8) Focusing on the circle below that, we can do the same:
[tex]\begin{gathered} m\angle AEC=\frac{1}{2}(mAC+mBD) \\ 7x+50=\frac{1}{2}(8x+4x+120) \\ 7x+50=6x+60 \\ 7x=6x+10 \\ 7x-6x=6x+10-6x \\ x=10 \end{gathered}[/tex]9) And finally, we can do that since the same case presents here:
[tex]\begin{gathered} m\angle BED=\frac{1}{2}(mAC+mBD) \\ 10x+40=\frac{1}{2}(14x-32+20x) \\ 10x+40=17x-16 \\ 10x+40-40=17x-16-40 \\ 10x=17x-56 \\ 10x-17x=17x-56-17x \\ -7x=-56 \\ \frac{-7x}{-7}=\frac{-56}{-7} \\ x=8 \end{gathered}[/tex]