Respuesta :

ANSWER

[tex]\begin{gathered} Center:(4,-5) \\ Radius:5 \end{gathered}[/tex]

EXPLANATION

We want to find the center and radius of the circle with the given equation:

[tex]x^2+y^2-8x+10y=-16[/tex]

To do this, we have to write the equation in standard form:

[tex](x-h)^2+(x-k)^2=r^2[/tex]

where (h, k) = center

r = radius

To do this, complete the square for both x and y variables of the equation.

Let us do that now:

[tex]\begin{gathered} x^2-8x+y^2+10y=-16 \\ x^2-8x+(-\frac{8}{2})^2+y^2+10y+(\frac{10}{2})^2=-16+(-\frac{8}{2})^2+(\frac{10}{2})^2 \\ x^2-8x+16+y^2+10y+25=-16+16+25 \\ x^2-8x+16+y^2+10y+25=25 \end{gathered}[/tex]

Finally, factorize both the x and y variables:

[tex]\begin{gathered} x^2-4x-4x+16+y^2+5y+5y+25=25 \\ x(x-4)-4(x-4)+y(y+5)+5(y+5)=25 \\ (x-4)(x-4)+(y+5)(y+5)=25 \\ (x-4)^2+(y+5)^2=5^2 \end{gathered}[/tex]

Therefore, the center and radius of the circle are:

[tex]\begin{gathered} Center:(4,-5) \\ Radius:5 \end{gathered}[/tex]

That is the answer.