ANSWER:
(a) 355.56 Hz
(b) 282.84 Hz
(c) 309.84 Hz
(d) 200 Hz
STEP-BY-STEP EXPLANATION:
Given:
n1 = primary frequency = 400 Hz
L1 = primary length = 0.8 m
(a)
New length = L2 = 0.9 m
Frequency of the length is string isproportional to the length of the string. i.e n ∝ L1
[tex]\begin{gathered} \frac{n_1}{n_2}=\frac{L_2}{L_1} \\ n_2=\frac{L_1\cdot n_1}{L_2} \\ n_2=\frac{0.8\cdot400}{0.9} \\ n_2=355.56\text{ Hz} \end{gathered}[/tex](b)
ρ is the density
[tex]\begin{gathered} n\propto\frac{1}{\sqrt{\rho}} \\ \rho_2=2\rho_1 \\ \frac{n_1}{n_2}=\sqrt{\frac{\rho_2}{\rho_1}} \\ \frac{n_1}{n_2}=\sqrt[]{\frac{2\rho_1}{\rho_1}} \\ \frac{n_1}{n_2}=\sqrt[]{2} \\ n_2=\frac{n_1}{\sqrt[]{2}}=\frac{400}{\sqrt[]{2}} \\ n_2=282.84\text{ Hz} \end{gathered}[/tex](c)
T is the tension
[tex]\begin{gathered} n\propto\sqrt[]{T} \\ T_2=T_1-0.4\cdot T_1 \\ T_2=0.6\cdot T_1 \\ \frac{n_2}{n_1}=\sqrt[]{\frac{T_2}{T_1_{}}} \\ \frac{n_2}{n_1}=\sqrt[]{\frac{0.6\cdot T_1}{T_1}} \\ \frac{n_2}{n_1}=\sqrt[]{0.6} \\ n_2=400\cdot\sqrt[]{0.6} \\ n_2=309.84\text{ Hz} \end{gathered}[/tex](d)
d is the diameter
[tex]\begin{gathered} n\propto d \\ d_2=2\cdot d_1 \\ \frac{n_1}{n_2}=\frac{d_2}{d_1} \\ \frac{n_1}{n_2}=\frac{2\cdot d_1}{d_1} \\ \frac{n_1}{n_2}=2 \\ n_2=\frac{n_1}{2}=\frac{400}{2} \\ n_2=200\text{ Hz} \end{gathered}[/tex]