Respuesta :

Explanation:

The general form of an exponential funtion isgiven below as

[tex]y=ab^x[/tex]

From the question, the two points given are

[tex]\begin{gathered} (2.5,13) \\ (9.5,20) \end{gathered}[/tex]

Step 1:

Put x=2.5 and y=13 to get equation 1

[tex]\begin{gathered} y=ab^x \\ 13=ab^{2.5}----(1) \end{gathered}[/tex]

Step 2:

Put x=9.5 and y=20 get equation 2

[tex]\begin{gathered} y=ab^x \\ 20=ab^{9.5}-----(2) \end{gathered}[/tex]

Step 3:

Divide equation (2) by (1)

[tex]\begin{gathered} \frac{20}{13}=\frac{ab^{9.5}}{ab^{2.5}} \\ b^7=\frac{20}{13} \\ b=\sqrt[7]{\frac{20}{13}} \end{gathered}[/tex]

Sustitute b in equation 1

[tex]\begin{gathered} 13=ab^{2.5} \\ a=\frac{13}{(\sqrt[7]{\frac{20}{13})^{2.5}}} \\ a=11.146 \end{gathered}[/tex]

Step 4:

Find y when x=16

[tex]\begin{gathered} y=ab^x \\ y=11.146(\sqrt[7]{\frac{20}{13})^{16}} \\ y=29.84 \end{gathered}[/tex]

Hence,

The final answer is

[tex]f(16)=29.84[/tex]