Respuesta :

We are asked to simplify the following expression

[tex]\sqrt[]{\frac{405}{324}}[/tex]

Recall the quotient rule of radicands given by

[tex]\sqrt[]{\frac{a}{b}}=\frac{\sqrt[]{a}}{\sqrt[]{b}}[/tex]

Applying the above rule to the given expression

[tex]\sqrt[]{\frac{405}{324}}=\frac{\sqrt[]{405}}{\sqrt[]{324}}[/tex]

Notice that the square root of 324 is equal to 18

[tex]\frac{\sqrt[]{405}}{\sqrt[]{324}}=\frac{\sqrt[]{405}}{18}[/tex]

Also, notice that we can break 405 into factors as

[tex]\sqrt[]{405}=\sqrt[]{81\times5}=\sqrt[]{81}\cdot\sqrt[]{5}=9\cdot\sqrt[]{5}[/tex]

So, the expression becomes

[tex]\frac{\sqrt[]{405}}{18}=\frac{9\cdot\sqrt[]{5}}{18}=\frac{\sqrt[]{5}}{2}[/tex]

Therefore, the simplified expression is

[tex]\frac{\sqrt[]{5}}{2}[/tex]

a = √5

b = 2