15. In a class of 10 boys and 12 girls, four students are to be chosen to serve on a committee. What is the probability that: a. All 4 members of the committee will be girls? b. All 4 members of the committee will be boys? C. There will be at least one girl on the committee? 1

Respuesta :

A)

We will solve using:

[tex]_{22}C_4=\frac{22\cdot21\cdot20\cdot19}{4\cdot3\cdot2}=7315[/tex]

The number of ways to choose 4 girls from 12 girls and 0 boys from 10 boys is:

[tex]_{10}C_0\cdot_{12}C_4=1\cdot\frac{12!}{8!\cdot4!}=\frac{12\cdot11\cdot10\cdot9}{4\cdot3\cdot2}=495[/tex]

So, the probability() of choosing 4 just 4 girls is:

[tex]P=\frac{_{10}C_0\cdot_{12}C_4}{_{22}C_4}\Rightarrow P=\frac{495}{7315}\Rightarrow P=\frac{9}{133}\Rightarrow P\approx0.068[/tex]

So, that is the probability to get just 4 girls on the committee.

B)

For the committee to be just 4 boys is found as follows:

[tex]_{22}C_4=\frac{22\cdot21\cdot20\cdot19}{4\cdot3\cdot2}=7315[/tex]

And the number of ways to choose 4 boys from 10 boys and 0 girls from 12 girls is:

[tex]_{10}C_4\cdot_{12}C_0=\frac{10\cdot9\cdot8\cdot7}{4\cdot3\cdot2}=210[/tex]

So, the probability to get just 4 boys on the committee is:

[tex]P=\frac{_{10}C_4\cdot_{12}C_0}{_{22}C_4}\Rightarrow P=\frac{210}{7315}\Rightarrow P=\frac{6}{209}\Rightarrow P\approx0.028[/tex]

C)

For the committee to have at least one girl is:

[tex]_{22}C_4=\frac{22\cdot21\cdot20\cdot19}{4\cdot3\cdot2}=7315[/tex]

No. of ways to selecting at least 1 girl:

22C4 - 10C4 = 7315 - 210 = 7105

Now, we calculate the probability:

[tex]P=\frac{7105}{7315}\Rightarrow P=\frac{203}{209}\Rightarrow P\approx0.971[/tex]