Respuesta :

Given:

[tex]cos\theta=\frac{3}{5}[/tex]

Let's solve for tan(θ).

Apply the trigonometric ratio formula for cosine:

[tex]cos\theta=\frac{\text{ adjacent}}{hypotenuse}=\frac{3}{5}[/tex]

Hence, we have:

Adjacent = 3

Hypotenuse = 5

Now, let's find the opposite side using Pythagorean Theorem:

[tex]\text{ opposite = }\sqrt{(hypotenuse)^2-(adjacent)^2}[/tex]

Thus, we have:

[tex]\begin{gathered} \text{ opposite = }\sqrt{5^2-3^2} \\ \\ \text{ opposite = }\sqrt{25-9} \\ \\ \text{ opposite = }\sqrt{16}=4 \end{gathered}[/tex]

Therefore, the opposite side is 4 units.

Apply the trigonometric ratio formula for tangent:

[tex]tan\theta=\frac{\text{ opposite }}{adjacent}[/tex]

Where:

Opposite = 4

Adjacent = 3

Hence, we have:

[tex]tan\theta=\frac{4}{3}[/tex]

Therefore, the answer is:

tanθ = 4/3

ANSWER:

4/3