You want to be able to withdraw $45,000 each year for 25 years. Your account earns 10% interest. How much do you need in your account at the beginning?The answer is given as: 408466.80I just need the breakdown on how to get this answer.

Step 1
State the formula for annuities
[tex]P_o=\frac{d(1-(1+\frac{r}{k})^{-kn})}{\frac{r}{k}}[/tex]Where;
[tex]\begin{gathered} P_o=amount\text{ at start} \\ d=Regular\text{ withdrawal=45000} \\ r=\frac{10}{100}=0.1 \\ n=25 \\ k=1 \end{gathered}[/tex]Step 2
Find the amount that will be there at the beginning
[tex]P_o=\frac{45000(1-(1+\frac{0.1}{1})^{-1(25)})}{\frac{0.1}{1}}[/tex][tex]\begin{gathered} P_o=\frac{45000(1-(1.1)^{-25})}{0.1} \\ P_o=\frac{40846.68008}{0.1} \\ P_o=\text{\$408466.8008} \\ P_o\approx\text{\$408466.80} \end{gathered}[/tex]Answer;
[tex]P_o=\text{ \$408466.80}[/tex]