The shape of the inside of a glass follows a parabola with the function f(x) = x2 + 6x + 9. What point represents the bottom of the inside of theglass?O A (-3,0)0 B (0, -3)C. (0,3)OD. (3,0)

Respuesta :

For the function

[tex]f(x)=x^2+6x+9[/tex]

To calculate its vertex (x-intersect) you have to do as follws using the formula:

[tex]\begin{gathered} x_v=-\frac{b}{2a} \\ \text{For} \\ f(x)=ax^2+bx+c \end{gathered}[/tex]

For the given function

a=1

b=6

c=9

So

[tex]x_v=-\frac{6}{2\cdot1}=-\frac{6}{2}=-3[/tex]

The coordinates for the bottom of the inside of the glas, i.e. the x-intersect of the parabola are (-3,0)