Respuesta :

Answer:

The minimum value of the function is -8 and the maximum is infinite.

Step-by-step explanation:

Quadratic function:

In the format:

y = ax² + bx + c

If a is positive, the minimum value is given by:

[tex]y_{MIN}=-\frac{b^2-4ac}{4a}[/tex]

In this question:

First we place in the general format.

y = 3(x - 3)² - 4

y = 3(x² - 6x + 9) - 4

y = 3x² - 18x + 27 - 4

y = 3x² - 18x + 23

So a = 3, b = -18, c = 23

The minimum value is:

[tex]y_{MIN}=-\frac{(-18)^2-4\ast3\ast23}{2\ast3}=-\frac{48}{6}=-8[/tex]

The minimum value of the function is -8 and the maximum is infinite.