Answer:
The minimum value of the function is -8 and the maximum is infinite.
Step-by-step explanation:
Quadratic function:
In the format:
y = ax² + bx + c
If a is positive, the minimum value is given by:
[tex]y_{MIN}=-\frac{b^2-4ac}{4a}[/tex]In this question:
First we place in the general format.
y = 3(x - 3)² - 4
y = 3(x² - 6x + 9) - 4
y = 3x² - 18x + 27 - 4
y = 3x² - 18x + 23
So a = 3, b = -18, c = 23
The minimum value is:
[tex]y_{MIN}=-\frac{(-18)^2-4\ast3\ast23}{2\ast3}=-\frac{48}{6}=-8[/tex]The minimum value of the function is -8 and the maximum is infinite.