[tex]\begin{gathered} if\text{ x represents the number of miles, then the price of plan A is} \\ 15+0.30x, \\ \text{and the equation for plan B is} \\ 25+0.25x \\ \\ \text{then the cost equals if and only if} \\ \\ 15+0.3x=25+0.25x \\ 0.3x-0.25x=25-15 \\ 0.05x=10 \\ x=\frac{10}{0.05} \\ x=200 \\ \end{gathered}[/tex]
So the number of miles on which the cost of plan A and plan B are equal is at 200 miles