Functions defined by integrals, please let me know if you have any questions regarding the materials, I'd be more than happy to help. Thanks!

Functions defined by integrals please let me know if you have any questions regarding the materials Id be more than happy to help Thanks class=

Respuesta :

Given the function

[tex]D\left(t\right)=\frac{6t}{1+2t}[/tex]

Notice that

[tex]\begin{gathered} D\left(t\right)=6\left(\frac{t}{1+2t}\right)=6\left(\frac{1}{2}-\frac{1}{4t+2}\right) \\ \Rightarrow D\left(t\right)=6\left(\frac{1}{2}-\frac{1}{2\left(2t+1\right)}\right) \end{gathered}[/tex]

Then, integrate D(t) from t=0 to t=3, as shown below

[tex]\Rightarrow\int_0^3D\left(t\right)dt=\int_0^36\left(\frac{1}{2}-\frac{1}{2\left(2t+1\right)}\right)dt=6\left(\frac{1}{2}\int_0^3dt-\frac{1}{2}\int_0^3\frac{dt}{\left(2t+1\right)}\right?[/tex]

Then,

[tex]\Rightarrow\int_0^3D\left(t\right)dt=6\left(\frac{1}{2}*3-\frac{1}{2}\int_0^3\frac{dt}{2t+1}\right)[/tex]

As for the remaining integral, set x=2t+1; then dx=2dt. Solving using that substitution,

as for the integration limits, when t=3, x=7, and when t=0, x=1.

[tex]\int_0^3\frac{dt}{2t+1}=\frac{1}{2}\int_1^7\frac{dx}{x}=\frac{1}{2}\left(ln\left(7\right)-ln\left(1\right)\right?=\frac{1}{2}\left(ln\left(\frac{7}{1}\right)\right)=\frac{1}{2}ln\left(7\right)[/tex]

Therefore,

[tex]\Rightarrow\int_0^3D\left(t\right)dt=6\left(\frac{3}{2}-\frac{1}{2}\left(\frac{1}{2}ln\left(7\right)\right)\right)=9-\frac{3}{2}ln\left(7\right)[/tex]

Rounding to three decimal places,

[tex]\Rightarrow\int_0^3D\lparen t)dt\approx6.081[/tex]

Thus, the answer is 6.081