Answer:
• Vertex: (5,-2)
,• Points to the left of the vertex: (3,2) and (4,-1)
,• Points to the right of the vertex: (7,2) and (6, -1)
Explanation:
Given the equation of the parabola:
[tex]y=x^2-10x+23[/tex]First, determine the vertex:
[tex]\begin{gathered} \text{Axis of symmetry: }x=-\frac{b}{2a} \\ x=-\frac{-10}{2\times1} \\ x=5 \\ \text{When x=5} \\ y=5^2-10(5)+23=-2 \\ \implies\text{Vertex}=(5,-2) \end{gathered}[/tex]A table of values for the function is given below with the vertex identified:
Thus, we have the graph below:
• Vertex: (5,-2)
• Points to the left of the vertex: (3,2) and (4,-1)
,• Points to the right of the vertex: (7,2) and (6, -1)