Graph the parabola.y=x2 - 10x + 23Plot five points on the parabola: the vertex, two points to the left of the vertex, and two points to the right of the vertex. Then click onthe graph-a-function button.12-110х5?42-1010-

Respuesta :

Answer:

• Vertex: (5,-2)

,

• Points to the left of the vertex: (3,2) and (4,-1)

,

• Points to the right of the vertex: (7,2) and (6, -1)

Explanation:

Given the equation of the parabola:

[tex]y=x^2-10x+23[/tex]

First, determine the vertex:

[tex]\begin{gathered} \text{Axis of symmetry: }x=-\frac{b}{2a} \\ x=-\frac{-10}{2\times1} \\ x=5 \\ \text{When x=5} \\ y=5^2-10(5)+23=-2 \\ \implies\text{Vertex}=(5,-2) \end{gathered}[/tex]

A table of values for the function is given below with the vertex identified:

Thus, we have the graph below:

• Vertex: (5,-2)

• Points to the left of the vertex: (3,2) and (4,-1)

,

• Points to the right of the vertex: (7,2) and (6, -1)

Ver imagen LenyaM267752
Ver imagen LenyaM267752