2. The triangles shown are similar. Their similarity coefficient is 1.5. Calculate the lengths of the sides of A1B1C1 and the sizes of the angles.

2 The triangles shown are similar Their similarity coefficient is 15 Calculate the lengths of the sides of A1B1C1 and the sizes of the angles class=

Respuesta :

Given

Two triangles

Find

Length of the side and angle of triangle A1B1C1

Explanation

In triangle ABC

angle A = 90 degree

[tex]\begin{gathered} \frac{a}{\sin A}=\frac{b}{\sin B} \\ \sin B=\frac{3}{6}\times\sin A \\ \sin B=\frac{1}{2}\times\sin90\degree \\ B=30\degree \end{gathered}[/tex]

as we know , sum of all angles of triangle is 180 degree.

so,

[tex]\angle C=180\degree-90\degree-30\degree=60\degree[/tex]

now, from

[tex]\Delta A_1B_1C_1[/tex]

we have

[tex]\begin{gathered} A_1C_1=\frac{3}{1.5}=2 \\ B_1C_1=\frac{6}{1.5}=4 \\ A_1B_1=\sqrt{4^2-2^2}=\sqrt{16-4}=\sqrt{12}=2\sqrt{3} \end{gathered}[/tex]

Final Answer

Sides are

[tex]\begin{gathered} A_1C_1=2 \\ B_1C_1=4 \\ A_1B_1=2\sqrt{3} \end{gathered}[/tex]

angles are

[tex]\begin{gathered} \angle A=90\degree \\ \angle B=30\degree \\ \angle C=60\degree \end{gathered}[/tex]

Ver imagen ShraddhaD528896