2. The triangles shown are similar. Their similarity coefficient is 1.5. Calculate the lengths of the sides of A1B1C1 and the sizes of the angles.

Given
Two triangles
Find
Length of the side and angle of triangle A1B1C1
Explanation
In triangle ABC
angle A = 90 degree
[tex]\begin{gathered} \frac{a}{\sin A}=\frac{b}{\sin B} \\ \sin B=\frac{3}{6}\times\sin A \\ \sin B=\frac{1}{2}\times\sin90\degree \\ B=30\degree \end{gathered}[/tex]as we know , sum of all angles of triangle is 180 degree.
so,
[tex]\angle C=180\degree-90\degree-30\degree=60\degree[/tex]now, from
[tex]\Delta A_1B_1C_1[/tex]we have
[tex]\begin{gathered} A_1C_1=\frac{3}{1.5}=2 \\ B_1C_1=\frac{6}{1.5}=4 \\ A_1B_1=\sqrt{4^2-2^2}=\sqrt{16-4}=\sqrt{12}=2\sqrt{3} \end{gathered}[/tex]Final Answer
Sides are
[tex]\begin{gathered} A_1C_1=2 \\ B_1C_1=4 \\ A_1B_1=2\sqrt{3} \end{gathered}[/tex]angles are
[tex]\begin{gathered} \angle A=90\degree \\ \angle B=30\degree \\ \angle C=60\degree \end{gathered}[/tex]