Shaded region area is:
[tex]\text{shaded area=area of circle-area of triangle}[/tex]Area of circle is:
[tex]\text{Circle}=\pir^2[/tex]According to figure diameter of circle is 7.
then the radius is :
[tex]\begin{gathered} \text{radius}=\frac{7}{2} \\ =3.5 \end{gathered}[/tex]So the area of circle is:
[tex]\begin{gathered} \text{circle}=\pir^2 \\ =\pi(3.5)^2 \\ =12.25\pi \\ =38.48 \end{gathered}[/tex]Area of equilateral triangle is:
[tex]\text{triangle}=\frac{\sqrt[]{3}}{4}a^2[/tex]Where a is sides.
a = 5.
[tex]\begin{gathered} =\frac{\sqrt[]{3}}{4}a^2 \\ =\frac{\sqrt[]{3}}{4}(5)^2 \\ =\frac{25\sqrt[]{3}}{4} \\ =10.82 \end{gathered}[/tex]So the area of shaded region is:
[tex]\begin{gathered} =\text{area of circle-area of triangle} \\ =38.48-10.82 \\ =27.66 \end{gathered}[/tex]