Respuesta :

From the diagram, we are to find the value of x.

Using the sine rule

[tex]\begin{gathered} \frac{a}{\sin A}=\frac{b}{\sin B} \\ \text{where a=15. A=70}^0,b=14,B=x^0 \end{gathered}[/tex][tex]\begin{gathered} \frac{15}{\sin70}=\frac{14}{\sin x} \\ by\text{ cross multiplication, we have } \\ 15\sin x=14\sin 70 \end{gathered}[/tex][tex]\begin{gathered} we\text{ now divide both side by 15} \\ \sin x=\frac{14\sin 70}{15} \\ \sin x=\frac{14(0.9397)}{15} \\ \sin x=\frac{13.1557}{15} \\ \sin x=0.8770 \end{gathered}[/tex]

To find the angle x, you take the sin inverse of the value of the right-hand side

[tex]\begin{gathered} x=\sin ^{-1}(0.8770) \\ x=61.28^0 \end{gathered}[/tex]

Hence the number that belongs to the green box is 61.3 to the nearest tenth

Ver imagen MassiM732340