Respuesta :

SOLUTION

Giving The set

[tex]A=\mleft\lbrace p,q,r\mright\rbrace[/tex]

Then from cartesian coordinate of a set,

[tex]A^2=A\times A=\mleft\lbrace p,q,r\mright\rbrace\times\mleft\lbrace p,q,r\mright\rbrace[/tex]

Then we expand the set above

[tex]A^2=\mleft\lbrace(p,p\mright),(p,q),(p,r),(q,p),(q,q),(q,r),(r,p),(r,q),(r,r)\}[/tex]

The extension of a set is the set itself.

Hence

[tex]\begin{gathered} \text{extension A}^2=A^2 \\ \text{extension A}^2=\lbrace(p,p),(p,q),(p,r),(q,p),(q,q),(q,r),(r,p),(r,q),(r,r)\} \end{gathered}[/tex]

Extension A² = {(p,p),(p,q),(p,r),(q,p),(q,q),(q,r),(r,p),(r,q),(r,r)}

The cardinality of a set is the number of elements in the set.

[tex]\begin{gathered} \text{Cardinality of A}^2=cardA^2 \\ \text{cardA}^2=9 \end{gathered}[/tex]

Hence

Card A²=9

Then Card A is

[tex]\begin{gathered} \sin ce\text{ A=}\mleft\lbrace p,q,r\mright\rbrace \\ \text{cardinality of A=CardA=3} \\ \text{Hence } \\ (CardA)=3^2=9^{} \end{gathered}[/tex]

Therefore

[tex]\text{cardA}^2=(\text{card)}^2=9[/tex]

Therefore

cardA²=(card)²=9