Respuesta :

Given the function;

[tex]s(t)=100\cos (0.75t).e^{-0.2t}+100[/tex]

Part A:

We can find the change in the vertical position of the bungee jumper between t=0 and t=15 by subtracting the values derived after substituting the time values into the function.

When t=0

[tex]\begin{gathered} s(t)=100\cos (0.75\times0)\text{.e}^{-0.2\times0}+100 \\ s(t)=(100\cos 0\times1)+100 \\ s(t)=100+100 \\ s(t)=200 \end{gathered}[/tex]

When t =15

[tex]\begin{gathered} s(t)=100\cos (0.75\times15)\text{.e}^{-0.2\times15}+100 \\ s(t)=100\cos (11.25)\text{.}e^{-3}+100 \\ s(t)=101.125 \end{gathered}[/tex]

Therefore, the change in vertical position is

[tex]\begin{gathered} s(15)-s(0)=101.125-200 \\ =-98.875 \end{gathered}[/tex]

Answer:

[tex]-98.875\cong-100[/tex]

If we read the value of the graph, the answer also corresponds to -100.

Part B

The Jumper's average velocity would be given by

[tex]\frac{\triangle s}{\triangle t}=\frac{s(t_2)-s(t_1)}{t_2-t_1}_{}[/tex]

We would read off the graph by tracing the "t" values to their corresponding "s" values

For [0,15]

[tex]\begin{gathered} _{} \\ \frac{\triangle s}{\triangle t}=\frac{100-200}{15-0} \\ \frac{\triangle s}{\triangle t}=-\frac{100}{15} \\ =-6.6667ms^{-1} \end{gathered}[/tex]

Answer:

[tex]-6.6667ms^{-1}[/tex]

For [0,2]

[tex]\begin{gathered} \frac{\triangle s}{\triangle t}=\frac{105-200}{2-0} \\ =-\frac{100}{2} \\ =-47.5ms^{-1} \end{gathered}[/tex]

Answer:

[tex]-47.5ms^{-1}[/tex]

For [1,6]

[tex]\begin{gathered} \frac{\triangle s}{\triangle t}=\frac{90-155}{6-1} \\ ==\frac{-65}{5} \\ =-13ms^{-1} \end{gathered}[/tex]

Answer:

[tex]-13ms^{-1}[/tex]

For [8,10]

[tex]\begin{gathered} \frac{\triangle s}{\triangle t}=\frac{105-120}{10-8} \\ =-\frac{15}{2} \\ =-7.5ms^{-1} \end{gathered}[/tex]

Answer:

[tex]-7.5ms^{-1}[/tex]

Part C

The bungee jumper achieves the highest average velocity at -6.6667m/s. Therefore the time interval would be;

Answer:

[tex]t=\lbrack0,15\rbrack[/tex]