Using the net of each solid shape, find its surface area.

Solution
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Find the area of J
[tex]\begin{gathered} J\text{ is a triangle} \\ Area\text{ of triangle}=\frac{1}{2}\times b\times h \\ Area\text{ of triangle}=\frac{1}{2}\times6\times8=3\times8=24ft^2 \end{gathered}[/tex]STEP 2: Find the area of K
[tex]\begin{gathered} K\text{ is a rectangle} \\ Area\text{ of rectangle}=length\times width \\ Area=8ft\times9ft=72ft^2 \end{gathered}[/tex]STEP 3: Find the area of L
[tex]\begin{gathered} L\text{ is a rectangle} \\ Area\text{ of rectangle}=length\times width \\ Area=9ft\times6ft=54ft^2 \end{gathered}[/tex]STEP 4: Find the area of M
[tex]\begin{gathered} M\text{ is a Rectangle} \\ Area\text{ of rectangle}=length\times width \\ Area=9ft\times10ft=90ft^2 \end{gathered}[/tex]STEP 4: Find the area of N
[tex]\begin{gathered} N\text{ is a triangle with same dimensions as J} \\ Therefore,\text{ the area is the same as J} \\ Area=24ft^2 \end{gathered}[/tex]STEP 5: Find the surface area
To determine the surface area of a solid, we take the sum of the area of all the surfaces of a 3-dimensional solid object.
[tex]24ft^2+72ft^2+54ft^2+90ft^2+24ft^2=264ft^2[/tex]