(e) 4x2 + y2 = 64 Graph the vertices, foci, endpoints of the minor axis, and endpoints of the latera recta; then draw 2. the ellipse for each equation in problem 1. AB is a chord of the partial ellipse with equation f() = a - *. Find the length of AB using (a) 576x2 + 62 5y2 = 360,000, A(15,f(15)), B(20,f(20)) (b) 49x2 + 625y2 = 30,625, A(15,f(15)), B(20,f(20)) try test on each of the following ellipses. (c) x² + 46. 4y2 = 36 (6) 25x' + 16y? - 400 (d) 4x2 + y2 = 4 () x2 + 4y2 = 36 (h) 7x2 + 8y = 112 (g) 9x2 + ketch: then find the equation of

Respuesta :

we have the equation

[tex]576x^2+625y^2=360,000[/tex]

Simplify

Divide both sides by 360,000

so

[tex]\begin{gathered} \frac{576}{360,000}x^2+\frac{625}{360,000}y^2=\frac{360,000}{360,000} \\ \\ \\ \frac{x^2}{625}+\frac{y^2}{576}=1 \end{gathered}[/tex]

Remember that

625=25^2

576=24^2

substitute

[tex]\frac{x^2}{25^2}+\frac{y^2}{24^2}=1[/tex]

so

a^2=25 and b^2=24

we have the function f(x)

[tex]f(x)=\frac{b}{a}\sqrt[]{a^2-x^2}[/tex]

the point A is (15,f(15))

Calculate f(15)

[tex]f(15)=\frac{\sqrt[]{24}}{\sqrt[]{25}}\sqrt[]{25^2-15^2}[/tex][tex]f(15)=\frac{2\sqrt[]{6}}{5}\sqrt[]{400}[/tex]

simplify

[tex]f(15)=8\sqrt[]{6}[/tex]

the point A is

[tex]A(15,\text{ 8}\sqrt[]{6})[/tex]

Find the point B

B(20,f(20)

Calculate f(20)

[tex]f(20)=\frac{\sqrt[]{24}}{\sqrt[]{25}}\sqrt[]{25^2-20^2}[/tex][tex]f(20)=6\sqrt[]{6}[/tex]

the point B is

[tex]B(20,6\sqrt[]{6})[/tex]

Determine the distance between A and B

Applying the formula to calculate the distance between two points

[tex]d=\sqrt[\square]{(y2-y1)^2+(x2-x1)^2}[/tex]

substitute the given values of A and B

[tex]d_{AB}=\sqrt[\square]{(6\sqrt[]{6}-8\sqrt[]{6})^2+(20-15)^2}[/tex][tex]\begin{gathered} d_{AB}=\sqrt[\square]{24+25} \\ d_{AB}=7 \end{gathered}[/tex]

therefore

the length of AB is 7 units