Respuesta :
we have
the system of inequalities
[tex]\begin{gathered} y\text{ < 6x-5} \\ y\ge-2x \end{gathered}[/tex]Remember that
If a ordered pair is a solution of the system of inequalities, then the ordered pair must satisfy both inequalities
so
we have the ordered pair
(1,2)
Verify inequality 1
x=1, y=2
[tex]\begin{gathered} 2\text{ < 6(1)-5} \\ 2\text{ <1 ---}\longrightarrow\text{ is not true} \end{gathered}[/tex]therefore
The ordered pair is not a solution of the system of inequalities
we have the ordered pair
(1,-4)
x=1, y=-4
Verify inequality 1
[tex]\begin{gathered} -4\text{ < 6(1)-5} \\ -4<\text{ 1 ---}\longrightarrow\text{ is true} \end{gathered}[/tex]Verify inequality 2
[tex]\begin{gathered} -4\text{ }\ge-2(1) \\ -4\ge-2\text{ ---}\longrightarrow\text{ is not true} \end{gathered}[/tex]therefore
teh ordered pair is not a solution for the system of inequalities
we have the ordered pair
(-2,6)
Verify inequality 1
x=-2, y=6
[tex]\begin{gathered} 6<6(-2)+5 \\ 6<-7\text{ ----}\longrightarrow\text{ is not true} \end{gathered}[/tex]therefore
the ordered pair is not a solution of the system of inequalities
we have
(-5,10)
x=-5, y=10
Verify inequality 1
[tex]\begin{gathered} 10<\text{ 6(-5)-5} \\ 10<\text{ -35 ---}\longrightarrow\text{ is not true} \end{gathered}[/tex]the ordered pair is not a solution of the system of inequalities