Respuesta :

Given data:

The given equation is 10x+6y= -84.

The given equation can be written as,

[tex]\begin{gathered} 6y=-10x-84 \\ y=-\frac{10}{6}x-\frac{84}{6} \\ =-\frac{5}{3}x-14 \end{gathered}[/tex]

The standard equation of the line is,

[tex]y=mx+c[/tex]

Compare both the equations.

[tex]m=-\frac{5}{3}[/tex]

The expression for the slope perpendicular to the given line is,

[tex]\begin{gathered} m^{\prime}=-\frac{1}{m} \\ m^{\prime}=-\frac{1}{(-\frac{5}{3})} \\ =\frac{3}{5} \end{gathered}[/tex]

Thus, the slope of the line perpendicular to the given line is 3/5.