Respuesta :

Given the following expression:

[tex]11^m=13^n[/tex]

Solving :

[tex]\sqrt[n]{11^m}=\sqrt[n]{13^n}[/tex][tex]\sqrt[n]{11^m}=13[/tex]

We can write the root in the following way:

[tex]\sqrt[n]{11^m}=11^{\frac{m}{n}}[/tex]

Therefore:

[tex]11^{\frac{m}{n}}=13[/tex]

If m>n :

[tex]11^{\frac{m}{n}}>11[/tex]

If m[tex]11^{\frac{m}{n}}<11[/tex]Therefore, m have to be greater than n.

Finally: if m and n are integers:

[tex]11^{\frac{m}{n}}=11^{\frac{3}{2}}=36.48[/tex]

To get a value equal to 13, n has to be close to m, otherwise the number will be very large.

In this case: (Using the same numbers of the example):

[tex]11^{\frac{m}{n}}=11^{\frac{3}{2.8}}=13.0550[/tex]

Answer: It is impossible to find non-zero integer numbers, because m or n have to be a rational number.