determine whether the lengths can form a triangle. If so, use the converse of the Pythagorean theorem to determine if the triangle is acute, obtuse, or right.

PythagorasSolution
To determine if this will give a Pythagoras Theorem or not
we have to test using pythagora's theorem.
[tex]\begin{gathered} (Hyp)^2=(opp)^2+(Adj)^2 \\ \text{Let the Hyp = 91, Opp = 46, Adj = 44} \\ (Hyp)^2=(opp)^2+(Adj)^2 \\ 91^2=46^2+44^2 \\ 8281\text{ = 2116 + 1936} \\ 8281\text{ }\ne\text{ 4052} \\ As\text{ we can s}ee\text{ that} \\ 91^2\ne46^2+44^2 \\ \text{Hence this can't form the length of a triangle} \end{gathered}[/tex]This is not a right-angle triangle.