Given data:
The resistance is R=1000 kΩ.
The capacitance of capacitor is C=1 μF.
The emf of battery is V₀=10 V.
Part (1)
The maximum voltage in the capacitor reached would be equal to the voltage of battery, i.e., V=10 V.
Thus, the maximum voltage of battery is V=10 V.
Part (2)
The maximum charge on the capacitor can be calculated as,
[tex]\begin{gathered} Q=VC \\ Q=(10\text{ V)(1}\times10^{-6}\text{ F)} \\ Q=10^{-5}\text{ C} \end{gathered}[/tex]
Thus, the maximum charge on capacitor is 10⁻⁵.
Part (3)
The time taken to reach the voltage 5 V will be,
[tex]\begin{gathered} V=V_0(1-e^{-\frac{t}{RC}}) \\ 5=10(1-e^{-\frac{t}{(1000)(10^{^{-6}})}}) \\ 0.5=e^{-\frac{t}{(1000)(10^{-6}^{}^{})}} \\ t=0.693\times10^{-3}\text{ s} \end{gathered}[/tex]
Thus, the time taken is 0.693x10⁻³ s.
Part (4)
The time taken can be calculated as,
[tex]\begin{gathered} V=V_0(1-e^{-\frac{t}{RC}}) \\ 2.5=10(1-e^{-\frac{t}{(1000)(10^{^{-6}})}}) \\ 0.75=e^{-\frac{t}{(1000)(10^{-6}^{}^{})}} \\ t=2.11\times10^{-3}\text{ s} \end{gathered}[/tex]
Thus, the time taken is 2.11x10⁻³ s.