Respuesta :

Solution

Given the function below

[tex]cot\theta=\cos\theta csc\theta[/tex]

Where

[tex]csc\theta=\frac{1}{\sin\theta}[/tex][tex]\begin{gathered} cot\theta=\cos\theta csc\theta \\ cot\theta=\cos\theta\times\frac{1}{\sin} \\ cot\theta=\frac{\cos\theta}{\sin\theta} \end{gathered}[/tex]

Also recall that the contangent formula is

[tex]cot\theta=\frac{\cos\theta}{\sin\theta}[/tex]

Thus;

[tex]\begin{gathered} cot\theta=\cos\theta csc\theta \\ \frac{\cos\theta}{\sin\theta}=\frac{\cos\theta}{\sin\theta} \end{gathered}[/tex]

From the above deduction,

sinθ is the denominator,

Hence, the domain of validity is defined for the set of real numbers except for sinθ = 0