Respuesta :

We will simplify further as follows:

[tex]\begin{gathered} \frac{1}{\frac{y}{5}-1}=\frac{1}{\frac{y-5}{5}}=\frac{(1)(5)}{(1)(y-5)} \\ \\ =\frac{5}{y-5} \end{gathered}[/tex]

***Sum of fractions***

[tex]\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}[/tex]

Now, using this with the information given we have:

[tex]\begin{gathered} \frac{y}{5}-1=\frac{y}{5}-\frac{1}{1}=\frac{(y)(1)-(5)(1)}{(5)(1)} \\ \\ =\frac{y-5}{5} \end{gathered}[/tex]

Now, we know that this expression was the denominator of 1, so:

[tex]\frac{1}{\frac{y}{5}-1}=\frac{1}{\frac{y-5}{5}}[/tex]

Now, using division of fractions

[tex]\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{(a)(d)}{(b)(c)}[/tex]

So, that is:

[tex]\frac{\frac{1}{1}}{\frac{y-5}{5}}=\frac{(1)(5)}{(1)(y-5)}=\frac{5}{y-5}[/tex]